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SUMMARY

A global estimate of the absolute oceanic general circulation from a geostrophic

inversion of in situ hydrographic data is tested against and then combined with an

estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model com-

puted using the JGM-3 gravity-field solution. Within the quantitative uncertainties of

both the hydrographic inversion and the geoid estimate, the two estimates derived by

very different methods are consistent. When the in situ inversion is combined with the

altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully con-

sistent with both hydrography and altimetry, is found. There is, however, little reduction

in the uncertainties of the calculated ocean circulation and its mass and heat fluxes

because the best available geoid estimate remains noisy relative to the purely oceano-

graphic inferences. The conclusion drawn from this is that the comparatively large

errors present in the existing geoid models now limit the ability of satellite altimeter data

to improve directly the general ocean circulation models derived from in situ measure-

ments. Because improvements in the geoid could be realized through a dedicated

spaceborne gravity recovery mission, the impact of hypothetical much better, future

geoid estimates on the circulation uncertainty is also quantified, showing significant

hypothetical reductions in the uncertainties of oceanic transport calculations. Full

ocean general circulation models could better exploit both existing oceanographic data

and future gravity-mission data, but their present use is severely limited by the inability

to quantify their error budgets.
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1 INTRODUCTION

In this paper, we explore the problem of estimating the

general circulation of the ocean through the combination of

in situ hydrographic data with absolute satellite altimetric

observations. Wnnsch & Gaposchkin (1980) discussed the

problem and showed schematically how it could be carried

out. At that time, the existing altimetric and geoid data

were far too crude to attempt a real calculation. Recently,

the advent of data of extraordinary accuracy and precision

from the TOPEX/POSEIDON mission, and the ancillary

great improvements made in estimates of the Earth's gravity

field (Tapley et al. 1997) lead us to re-open the question of

whether improvements can be made in the knowledge of the

large-scale steady ocean circulation through the combination

of hydrography and altimetry. The reader is reminded,

however, that this goal was regarded as perhaps the most

difficult of all those set for the mission (TOPEX Science

Working Group 1981), and a major focus of this paper is to

make a diagnosis of the factors that may today still limit its

achievement

Our general approach is based upon using prior knowledge

of the ocean circulation through quantitative use of the classi-

cal oceanographic fields of temperature, salinity, etc. That is,

one builds on existing information. The mathematical/physical

framework that we will use is the same as that outlined by

Wunsch & Gaposchkin (1980), being based on hydrostatic

quasi-geostrophic ocean dynamics, long transoceanic hydro-

graphic sections, and altimeter-measured sea-surface height

relative to an estimated marine geoid. The inverse formalism

has been described extensively in the literature; see for example

Wunsch (1978) or Wunsch (1996).

In Section 2 we present the inverse model, Section 3

describes the altimetric measurement and the error due to the
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geoid, and Section 4 outlines the method for combining the

results from hydrography with the altimetric data. It is found in

Section 5 that the large errors in the present geoid limit the

impact of the altimetric data, our figure of merit being the

integrated heat flux across the hydrographic sections. Finally,

Section 6 describes the impact of a hypothetical more accurate

degree 70 geoid resulting from a possible future gravity

mission. If all other errors are ignored, the reduction in the

heat flux uncertainties is as high as 60 per cent.

2 PURE HYDROGRAPHIC ESTIMATE

Consider, as an example, a so-called hydrographic section of

measured temperature and salinity, running in an east-west

direction, and let x be the distance coordinate along the sec-

tion, with z the corresponding vertical. If p(x, z) is the density

field as determined from the shipboard measurements, then the

'thermal-wind' equations produce the absolute velocity

g I z OpVabs(X , Z) = Vrel(X, Z) q- b(x) = -- _ zo _x dz q- b(x), (1)

where z0 is an arbitrary depth, called the reference-level, and

b(x) is the reference-level velocity, vrel is the relative velocity,

based solely upon the observed density field, g is local gravity,

andf is the local Coriolis parameter. Both v and b are directed

normal to the section. Classically, b(x) was regarded as

impossible to determine from shipboard measurements alone,

and thus circulation schemes were based upon attempts to

guess depths z0 where t)abs, and hence b(x), might plausibly be
assumed to vanish. The 'box-inverse' method discussed in the

references cited produces estimates of b(x) by demanding that

Vabs (and the corresponding velocities in the zonal direction)

should satisfy physically plausible sets of constraints such as

conservation of mass, salt, nutrients, or potential vorticity. The

result is an estimate, bi = b(xi), where xi are a set of discrete

positions lying between successive pairs of hydrographic
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stations. (In general, estimates of specific quantities will be

denoted by a tilde.) By definition, an inverse method is one for

which a quantitative uncertainty estimate for the solution, e.g.

P(1) = ((b - b) (b - b) T), (2)

is known. The possibility of determining P(1) is what dictates

the use of the present linear inverse model, rather than any of

several more sophisticated, but non-linear, models that are
available.

As outlined by Wunsch & Gaposchkin (1980), and also

discussed by the TOPEX Science Working Group (1981), if

altimetry is to provide new information about the ocean

circulation, the accuracy of the measurements must produce

significant improvements in the norm of P(1). For many pur-

poses we care less about the uncertainties of the individual bi

than we do about various weighted linear combinations,

aTb, where the elements of a are constants,with the product

representing integrated mass, heat, or other property trans-

ports. Thus one requires improvement either in the diagonal

elements of P(1) (the variances of the/_i) or in the variances of

the various transports, given by

( (aTb -- aTb) 2) = aTp(1)a. (3)

A full discussion of the general estimation methods can be

found in the references (see Bennett 1992; Wunsch 1996). But

one point must be emphasized: the constraints employed

generally reflect flow fields integrated over large distances and

areas (see Fig. 1). That is, although the ocean circulation

is known to be highly time-variable, the estimates based on

long-distance integrations such as transoceanic sections make

the plausible, but unproven, assumption that time-variable

elements tend to become very small. This assumption is

reasonably well-founded, in view of the observed stability over

decades of the large-scale density structure, but its validity

must be a constant focus of vigilance. The same assumption is

applied to integrals across intense boundary currents such as

Figure 1. The station positions of the hydrographic/CTD sections from Macdonald (1995) and Macdonald & Wunsch (1996).
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the Gulf Stream where it is bordered by Florida and the

Bahamas, and where intensive observation programmes over

several decades have shown no convincing evidence for secular

shifts. We will, however, return to the time-variation problem.

Here, the prior estimate of the ocean circulation is taken

from the recent computation of Macdonald (1995) and

Macdonald & Wunsch (1996), which is based on the box

inverse method of Wunsch (1978). The data consist of hydro-

graphy (temperature, salinity, oxygen, nutrients) as measured

along the transoceanic lines shown in Fig. 1. These data--

about 1600 pairs of stations--are used to calculate the thermal

wind relative to deep reference levels, which vary with location

(typically at about 1500 m depth) and produce a first estimate

Vrel(ri, z) of the oceanic geostrophic flow perpendicular to the

lines between each station pair located at ri. (Horizontal

positions, r, are in spherical coordinates.) Integration con-

stants b(ri) are estimated by requiring that the V,bs satisfy near-

conservation of mass, salt, oxygen, silicate and phosphate over

the large areas shown in Fig. 1. A prior covariance P(0) is

assigned to b, resulting in, as described in the references, esti-

mated values bi(1) and hence _abs(ri,2', 1) with a posterior

uncertainty in hi(l), given by P(1). The argument, 1, is used to

indicate that this estimate is the first of two that we will make of

the reference-level velocity and to distinguish it from the prior

uncertainty. The model noise is assigned a prior covariance

Rnn. The approximately 1600x 1600 matrix P(0) was taken to

be diagonal, with values of 1 cm 2 s -2 over the ocean interior,

and larger values, approaching 100 cm 2 s-2, in the western

boundary currents. Owing to the limited information available

in the inversion, b(1) is generally 'smooth'--that is, only its

long-wavelength elements are estimated, with short wave-

lengths remaining in the solution nullspace. The specific spatial

scales in b that are constrained are, however, a strong function

of geography. For example, inversions that take the Drake

Passage mass transport as accurately known produce values
for b that are well determined on the horizontal scale of the

Passage, 0(800 km). In contrast, the requirement for mass

conservation across the width of the Pacific Ocean determines

well the corresponding elements, bi, on a 10 000 km scale,

leaving the 500 km scale poorly constrained. This regional

variation in the scales of uncertainty of prior knowledge is an

essential feature of oceanography (and of fluid flows more

generally) and is an important complication in the combined

use of altimetry and hydrography.

The numerical values of P(1) are very important in the

following because the impact of the altimetry is measured by

its ability to reduce significantly the solution uncertainty.

Portions of two rows of P(1) are displayed in Fig. 2. Note that

the variance at these interior ocean locations remains near the

prior value of 1 cm 2 s -2 as a result of there being com-

paratively few (compared to the number of system unknowns)

available constraints. However, as will be seen, the remaining

errors near 1 cm 2 s -2 represent a benchmark against which to

measure geoid accuracy.

From the hydrographic solution, the estimated absolute

surface geostrophic velocity is

_s,h(ri, z=0, 1) _-Vrel(ri 0)-}-t_i(1)=_
O_/h(ri, l)

' Ox i' (4)

where t/h is the surface elevation. Thus eq. (4) produces an

estimate from the in situ data of the surface slope, 0_/h(ri, 1)/ax,

that should be measured by the altimeter at position i. P(1)

represents the contribution to the uncertainty of that slope

owing to the reference-level velocity, but not any uncertainty

arising from Vrel, and this latter uncertainty is a central issue in

the following.

The use of recursive inverse methods makes it possible to

constrain further the solution of the original problem. Martel

& Wunsch (1993a) built a finite-difference model and included

constraints not just from hydrography, but also from current

meters, floats and other observations. The model yielded

a solution for the North Atlantic circulation that was
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Figure 2. Portions of two rows of the error covariance from the inverse model P(1), one centred in the middle of the section at 24°N in the Atlantic,
the other (dotted] from the middle of the section at the same latitude in the Pacific. Most of the structure lies near the central peak, whose magnitude is

the error variance of a typical open ocean solution element.
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comparedinMartel& Wunsch(1993b)tothevelocitiesfrom
theGEOSATaltimeter.Withintheverylargeuncertainties
arisingfromthealtimetermeasurementsandthecrudegeoid
estimatebeingused,therewasmarginalagreementwiththe
hydrographicestimate,butnofurtherprogresswaspossible.

TheTOPEX/POSEIDONaltimetricdataandtheestimated
long-wavelengthmarinegeoidassociatedwiththeJGM-3
gravity-fieldmodel(Tapleyet al. 1996) are of much higher

quality than have ever been available before. We therefore

re-examine the idea of learning something of the absolute

circulation by obtaining an improved estimate of the absolute

ocean circulation by combining these data with the prior so-

lution hydrography as discussed in the next section.

Before proceeding to the altimetry, it may be helpful to

clarify the interpretation of the hydrographic estimate. At least

three depictions of the large-scale ocean circulation can be

discussed: (1) the instantaneous, absolute circulation; (2) the

time-average circulation; and (3) the instantaneous-circulation

anomaly measured relative to the time-averaged flow. (3) is

not of direct concern here because time fluctuations can be

determined independently of the geoid with altimetry. If the

hydrography were a true instantaneous measure of the ocean

temperature and salinity fields, then up to spatial coverage

issues, the present prior estimate would represent (1). However

with the available hydrography obtained from multidecadal

samples, Vabs(ri, z, 1) cannot represent the true instantaneous

absolute circulation unless the circulation is time-independent,

which it manifestly is not. Similarly, the estimate cannot be

considered a true time-averaged flow. How, then, should the

flow be interpreted?

First, it must be recognized that understanding the meaning

of flows inferred from non-instantaneous hydrography is a

central issue in modern observational oceanography and is not

peculiar to the use of altimetry. Altimetry does require a direct

confrontation with the question of the meaning of the flow,

which is otherwise often simply not discussed. There is, however,

considerable evidence that flow fields integrated across ocean

basins or straits such as that of Florida or the Drake Passage are

stable over decades (or more precisely, that there are no statis-

tically significant fluctuations visible with the existing data). We

thus postulate that the large-scale components of Vabs(ri, z, 1)

are. within some comparatively small error, a representation of

both the multidecadal time average and the instantaneous

absolute flow field. On shorter scales, babs(ri, z, 1) contains ele-

ments that are required to satisfy the constraints of the inversion,

but whose detailed structure is ephemeral. Later in this paper,

we will quantify the meaning of 'long' and 'short' scales.

One can usefully contrast the approach we are using here

with what can be regarded as the preferred or ultimate method:

existing oceanic general circulation models (GCMs) are

capable of calculating complete 3-D temperature, salinity,

pressure and flow fields from boundary conditions of estimates

of atmospheric stress and buoyancy exchanges with the ocean.

If further constrained to agreement, within error estimates, of

in situ temperatures and salinities, one would have prior esti-

mates of the complete oceanic fields at arbitrary locations, not

restricted to the hydrographic lines. The reason we do not use

this type of model is that there is no known practical way of

computing quantitative estimates of the uncertainties of the

resulting oceanic state estimates, which would include the sea-

surface elevation. These models have state vectors of immense

dimensions (exceeding 10 g elements) and the governing

©1997 RAS, GJI 128,708-722
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equations are highly non-linear. We have opted instead for a

linearized model for which an explicit state vector uncertainty

covariance can be computed, but which restricts us to the

hydrographic line positions.

There are also steady non-linear models (e.g. Mercier

1986; Wunsch 1994). These require that one partitions the

surface elevation between changes in the deep reference-

level velocity and those in the density field. On short scales

(e.g. 500-1000 km and less), it is clear that changes in the

density field are required, and probably dominate (see, for

example, the solution in Wunsch 1994). However, on the

transoceanic scales that predominate here, there is no evidence

of significant temporal changes in the density field, and it is the

deep pressure field that appears to require modification. In any

event, to the extent that our model ocean is too simple, we will

produce a priori oceanic state estimates with greater than

necessary uncertainties, and will therefore tend to overestimate

the impact of improved geoid estimates.

3 THE ALTIMETRIC ESTIMATE

A satellite-borne altimeter measures the shape of the sea

surface relative to the spacecraft. Knowledge of the position

of the spacecraft relative to the centre of the Earth produces

an estimate of the absolute sea-surface shape S(qS,2, t),

where _b and 2 are latitude and longitude respectively. The

oceanographically important quantity is the deviation,

_(q_, 2, t) = S(¢, 2, t) - q_(_, ,_), (5)

where _(q5,2) is the gravitational/centrifugal equipotential

called the geoid. Let the altimetrically determined value be

denoted Ylalt to distinguish it from the value implied by the

hydrography in eq. (4). With/']alt known along a zonal line, in

analogy to (4), altimetry provides an independent estimate of

the absolute surface velocity:

g 0tlalt (6)
Vs'a = f 0X'

or, in vector form,

Vs'a LVs,a J l-(g/f)o_alt/OxJ'

for the east and north components respectively (x and y are the

local eastward and northward Cartesian coordinates, but in

practice spherical coordinates are used). The interpolation to,

and projection of components at, the station pair positions was

carried out as described below for the computation of the geoid

slope error.

Let {)s,a(_i,/_i, Ai) denote the altimetric estimate of the

absolute surface geostrophic velocity normal to the the ith

hydrographic station pair, where Ai is the local azimuth angle

(see Fig. 3). Are the 1600 estimates _s,a = {vs,a(q_i, hi, Ai)} con-

sistent with _s,h from the hydrographic estimate, and do they

carry information capable of improving those estimates of b?

To answer both these questions, we must obtain an estimate,

Raa, of the covariance matrix of the errors in "_s,a.

The TOPEX/POSEIDON data set used is the 10 day gridded

2°x2 ° form described by King, Stammer & Wunsch (1994) and

Stammer & Wunsch (1994). The resulting surface height, S,

was further smoothed with a 4°x4 ° Shapiro (1970) filter.

An estimate, _/alt, of the mean absolute sea-surface height

(relative to the JGM-3 geoid; see Tapley et al. 1997) is formed
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Figure 3. Normal projection of the velocity from altimetry, Vsa(_i, 2i),

onto the station pairs.

by averaging the time-series over a 2 yr (cycles 9-81) period.

_alt is an estimate of the time-mean ocean dynamic topography,

t/, independent of the in situ data inversion.

3.1 The JGM-3 geoid slope error covariance

Raa describes all of the errors in the determination of _/alt and

hence of Vs,a, and it is here assumed to be completely dominated

by the uncertainty of the JGM-3 implied geoid. All other errors

are represented by a small white-noise contribution. This

simplifying assumption is justified by the dominance in the

altimetric measurement error of the gravity field error (e.g.

Tapley et al. 1994a; Tsaoussi & Koblinsky 1994). Although the

accuracy of the TOPEX/POSEIDON determination of S is

better than about 4 cm (Tapley et al. 1994b), the JGM-3 geoid

has estimated errors over the ocean of about 36 cm at wave-

lengths represented by a spherical harmonic expansion to

degree 70 (errors owing to omitted shorter space scales are

accounted for separately).

Error covariances of gravity-field models have been studied

frequently in terms of their propagation into geoid height

estimates (Rapp 1993; Haagmans & Gelderen 1991). Because _/

is of dynamical significance only through its derivatives, Raa is

proportional to the covariance of the geoid slope, not of the

geoid itself.

Let 6si be the geoid slope error between hydrographic station

pair i, then (6Si(_Sj) is the error covariance in pairs i,j. A

general procedure for computing this slope error covariance is

summarized in Appendix A. Then,

Raa_(_si_sj)g_._ (8)

[.Ji Jj )

is the required covariance.

Because Raa is the crucial element in determining the degree

to which altimetry can improve knowledge of the ocean circu-

lation, it is helpful to have some understanding of its structure.

Fig. 4 shows that it is dominated by its diagonal and near-

diagonal elements, but there are non-negligible covariances

between altimetric velocity errors between different sections

and even between different oceans. The diagonal elements are

large (see Fig. 5 for JGM-3 at N=70), corresponding to root-

mean-square (rms) geostrophic velocity errors between 25 and

60 cm s -z, and rising to near 200 cm s -1 near the western

boundaries. Much of the latitudinal structure arises from the

increase in 1/f towards the equator.

The geoid slope uncertainty is a function of wavelength as

well as geography. For a simple quantification of the JGM-3

geoid slope error, define the rms variance of the slope error

over a specific geographic domain A:

3_(A)= _l JA½(6s_+6s_)dA, (9)

where 6sx, 6sy denote the zonal and meridional components of

the geoid slope error (not to be confused with the values 6sl

defined between station pairs). Fig. 6 shows 6s globally and

over the ocean from 66°S to 66°N computed by varying the cut-

off degree, N, of the spherical harmonic expansion between 0

and 70. Note the rapid increase in 6s when N > 25.

The rows (or columns) of Raa show a general pattern close

to that of a truncated white-noise field (see Appendix B).

Fig. 7(dots) displays a row centred at a station pair in the

24°N Pacific section and shows a quasi-periodicity close to

5 °. This periodicity is mainly determined by the cut-off

degree, N. With N=70 the shortest wavelength present in

JGM-3 is approximately 40 000 km/70_570 km (one might

define the 'scale' as being one-quarter of the wavelength or

about 150 km), but the implied error in the altimetric velo-

cities is very large at the shortest wavelengths. In principle,

one can use the N = 70 representation of the geoid, because

the information that the long wavelengths are more reliably

determined than the short ones is contained in Raa.

Numerically, however, difficulties arise in working with

matrices whose elements range over many orders of magni-

tude; the errors accumulate as N increases. For the calcula-

tions described below, we have found it preferable to reduce

the representation to N=25, and to recompute the corre-

sponding Ra_. The bold line in Fig. 7 displays the analogue

for this reduced representation; now the oscillations occur

over about 14 ° (1600 km wavelengths). The implied slope

uncertainty is equivalent to geostrophic velocity errors of

about 2-3 cm s -1 rms. Truncation at even lower degrees is

possible, but then even fewer constraints on the ocean cir-

culation become possible, and N=25 is a reasonable com-

promise at the present time.

4 COMBINING THE TWO DATA SETS

Relative to the JGM-3 geoid, then, the two-year average

altimetric surface described above can be used to produce an

estimate of Vs,a averaged over the two years December 1992-

December 1994. Not only are there differences in the metho-

dology used in obtaining Va from that used in the hydrographic

inversion, but one is comparing a two-year average in the early

1990s with the inhomogeneous result of the hydrography. That

is, the hydrography and altimetry represent different oceans,

unless the circulation was steady over the approximately 25

years spanned by all the data.

4.1 Comparison and errors

The first question to be asked is whether the altimeter and

in situ inversion results for the surface geostrophic velocity

are consistent with each other within the uncertainties of

©1997 RAS, GJI 128, 708-722
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Figure 6. Squareroot ofthevariancesofthe JGM-3 geoid slope error

calculated both globally and over the ocean only as a function of the

cut-off degree in the spherical harmonic expansion.

each. A full answer is very complicated because, in addition to

the temporal averaging question, each is represented by a

1600x1600 covariance matrix and the question should be

answered scale-by-scale and position-by-position. We will

proceed in two stages: first, we will compare point-by-point

values and their uncertainty estimates, and then we will attempt

to force the in situ model to agreement with the altimetry. The

second step, if successful, simultaneously demonstrates con-

sistency, and produces a new solution using the information

from both in situ and altimetric data.

In making the comparisons we can directly compare the

surface velocities fs,h(1)=VR+6(1) (from the hydrographic

inversion) with _s,a, or we can compare 6 with fs,a - vk, i.e. the

altimetric estimate of the reference-level velocity under the

assumption that VR was unchanged in time. If this assumption

were correct, all elements were perfect, and the spatial resolu-

tion of the three velocities were identical, then in a totally con-

sistent, complete (in the sense of adequate information) result,

Vs,a --VR = 6(1). (10)

8°°i[.............._...............]..............._ ..........,"...............t ...............i...............600

:: i i l ! I " ' degree 70 geO d ]

400[ i i 11 i Imdogr_250eo,_l

200 ............... _'............... _............ i .......... ' ............... _ ..............................

-600
180 190 200 210 220 230 240 250

Longitude

Figure 7. Portion of a typical row (or column) vector of Raa for a

zonal oceanographic section at 24°N in the Pacific based on the JGM-3

error covariance for degree 70 (dots) and degree 25 (bold line). Each

dot represents a station pair location. The central point is located at the

maximum. Compare to Fig. 2.

This equality fails for at least four reasons: (1) there is an

expected error in 6(1), with covariance P(1); (2) there is an error

in _s,a, with covariance Raa; (3) VR is not time-independent; and

(4) the spatial resolution of VR is that of the hydrographic

station pairs, the resolution of _s,a is given by the cutoff degree,

N, and the resolution of 6 is that of the in situ inversion, which

as noted above is spatially variable.

To accommodate point (3), let the covariance of the

time-dependent portion of VR be Rtt. The covariance of the

error in the left-hand side of (10) is then Ra,-t-Rn, assuming

no correlation between the errors in altimetry and in

oceanic variability. Because the Raa, Rtt are additive, we

could regard the temporal variability as an error in the alti-

metry. In this view, an accurate depiction of the 'hydrographic

ocean' is the goal. An equally valid goal is the estimation of

the ocean during the 2 yr altimetric period: then, Rtt would be

an error in the hydrography as it represents the 'altimetric

ocean'. Either point of view is correct, but we will adhere to the

former.

Ideally, vR should be the 2 yr mean relative velocity sampled

in the same way as the satellite measurement _s,a. Because it is

impossible to obtain such measurements, we took VR from the

hydrographic section data, thus introducing time-dependent

eddy and other noise into the altimetric observations and Rtt.

The estimate (10) of the reference-level velocity is very noisy

and some small-scale fluctuations from VR can be as large as

100 cm s 1 (see Appendix C).

Specification of Rtt is a large, complex subject involving

representation of oceanic variability on all space- and time-

scales. Stammer (1997) used the along-track altimeter data

over the interior of the ocean to compute an estimate of the

global sea-surface slope spectrum, assuming isotropy. This

slope spectrum is shown in Fig. 8(a); a frequency/wavenumber

version will be displayed elsewhere. (The slope spectrum is

employed because it can be readily computed globally, whereas

the geostrophic velocity involves a division of the slope by f,

producing an equatorial singularity.) The total slope variance

is equivalent to a time-dependent geostrophic velocity variance

of 150 cm 2 s -2 at 45 ° latitude. An important feature of this

slope spectrum is the decay at large scales. In our case, it is an

error estimate, meaning that the patterns in VR are more

accurate on large scales. The total variance for scales larger

than 1600 km is less than 4 cm 2 s -2 at 45 ° latitude.

The interpretation of this value for comparison with

altimetric noise involves at least two distinct problems. The

spectrum (Fig. 8a) is computed from two years of data, and the

hydrography spans 25 years. It is dangerous to extrapolate

from the 2 yr frequency/wavenumber spectrum to that repre-

senting a non-existent 25 yr record. The frequency spectrum

has a characteristic 'red' structure (Wunsch, in preparation)

and at these scales, a 25 yr record would exhibit more energy

than a 2 yr record, but how much more is not clear. From this

point of view, we must interpret the 4 cm 2 s-2 as a lower

bound.

On the other hand, it is incorrect to ascribe the entirety of

this variability to the reference-level velocities, hi, because

doing so would imply that all oceanic variability was baro-

tropic (in the rigorous sense of representing a velocity with

no vertical structure, and completely unrelated to the density

field). On the contrary, it appears (Wunsch, in preparation)

that at long periods--longer than about 100 days--the bulk

of oceanic velocity variability is dominated by baroclinic
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Figure 8. (a) Slope spectrum from Stammer (1997) of the surface
variability. The total variance corresponds to 1.5x10 -2 cm 2 km -2 or

150 cm 2 s-2 at 45 ° latitude. Energy decreases markedly at both short

and long scales. (High wavenumber slope is not definitive; see Wunsch

& Stammer 1995). (b) Covariance function, F_(x), deduced from the

spectrum in (a).

motions, those directly associated with changes in the

interior density structure. Because Macdonald's (1995)

inversion is a linear one, there is no provision in it for

modifying the initial density-field estimates (for a discussion

of this problem, which is highly non-linear, see Wunsch

1994). From this viewpoint, the estimated variance of

4 cm 2 s 2 is an upper bound on the actual time variability

of bi over two years. Accepting this spectrum as having

rough validity, we calculated the covariance of VR as a

function of the distance between points (Fig. 8b). The

resulting covariance function, F_0pij), was then interpolated

between each pair to form the Rtt matrix,

Rtt(i,J): {_ Fs(@/j) _jJ.' } ,
(11)

where O(i,j) is the distance between station pair i and

pair j.

Concerning point (4) above, there are two ways of repre-

senting the differences due to the differing spatial resolutions.

We can either add to the various uncertainty matrices addi-

tional matrices representing the structures of the unresolved

components, or we can represent the different fields as

filtered versions of the true ones. We will employ a com-

bination of these two approaches. First note that P(1) as

computed by Macdonald (1995) includes the so-called null-

space contribution, that is, those structures that were not

resolved by the inversion, in contrast to the error covariances
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for the geoids which omit these contributions. Re-writing

(10) as

y(2) = F(vs,a -- VR) 4- n = Fb + n, (12)

where F is a matrix representing the filtering operation that the

altimetric measurement applies to the surface velocity, one
obtains

(nn T) = F(Raa + Rtt)F T = R(2),

The filtering operation in (12) is slightly complicated. The point

altimetric values represent a spatial average over about 5° for

N = 70, and over about 14 ° for N = 25, defining the averaging

distance in terms of the wavelength. These scales are much

larger than the station spacings in the hydrographic lines, and

a comparison of altimetric and hydrographic-inversion esti-

mates can only be made if the hydrographic velocities are

averaged equivalently. At best we can average the _sh, etc. only

linearly along the hydrographic lines. Another minor issue

is that because hydrographic stations are not uniformly

spaced, any filtering carried out of _h, etc. will be done with

non-uniformly spaced velocity elements (Appendix B).

Let S(O, ,l) be the correct absolute sea-surface elevation at

colatitude 0, and longitude 2. A truncated spherical harmonic

expansion (e.g. Wunsch 1991) is then the weighted average

S(0, 2) = W(O, 2, 0', 2')S(0', 2') sin O'dO'd2', (13)
0

where the averaging kernel W is approximately

n:N m=n

W(O,A,O',A')=__, Z ym(o"2')ym(0'2)*" (14)
n=0 m=--n

ym are the fully normalized spherical harmonics effectively

removing wavelengths shorter than _c = 360°/N.

To what extent can the spatial average (13) be expected to

agree with the linear average implicit in b(1)? If the ocean were

homogeneous and isotropic, one could answer this question in

the mean square with some elementary statistical calculations.

In practice, homogeneity and isotropy demonstrably fail. To

obtain at least a sense of the deviations expected, we took the

TOPEX/POSEIDON data from a 2°×2 ° set of gridded values

[formed from the along-track data as described by Stammer &

Wunsch (1994)]. From these data, a set of gridded velocities,

Vs,a-VR, were computed along the hydrographic lines and

taken to be representative of the type of structure present in b,

which as noted above is primarily long wavelength in nature.

These surface-velocity values were then interpolated at each

station pair and filtered along the sections with the filter F

set to remove wavelengths shorter than 360/25 ° (1600 km).

We assigned this signal to a one-dimensionally filtered long-

wavelength velocity. On the other hand, the same velocities

from this 2°×2 ° grid were spatially filtered in two dimensions

by using the truncated spherical harmonic expansion for

N = 25. These latter velocities were identically interpolated at

the station pairs and compared to the former one-dimension-

ally averaged ones. Fig. 9 shows the result of this comparison

for the zonal section Pacific 28°S and for the meridional section

132°E. Within the limits of present data accuracy, it appears

that the linear and spatial averages are indistinguishable.

For each of the sections, we compared the altimetric

estimate, y(2) to the in situ estimate Fb(1)= E(2)b(1), as

shown in Fig. 10 for the zonal Pacific 28°S section and the
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Figure 9. Comparison of TOPEX/POSEIDON-derived velocities
between the along-section (l-D) filtered version (bold line, with

uncertainties in the shaded region) with those from the spherical-

harmonic (2-D) filter (dotted lines are the uncertainty). Results are for

(a) the zonal section at 28°S in the Pacific and (b) the meridiona1132°E
section south of Australia.

Southern Ocean meridional section at 132°E. Here, as with

the remaining sections, the two estimates agree almost every-

where within one standard deviation of the two uncertainties.

The satellite data tend to show larger poleward velocities near

the western boundaries; it is not entirely clear whether the

in situ model is underestimating the velocity field there, or

whether there is some edge effect due to the different averaging

types.

4.2 Recursive improvement

Having demonstrated at least rough statistical consistency of

the two estimates of the reference-level velocity, we now turn to

the problem of combining them. We use a form of recursive

estimation (see e.g. Wunsch 1996) in which the new estimate of

the reference level velocity is b(2):

(2) = b (1) + K(2)[y(2) - E(2)b (1)], (15)

P(2) = P(1) - K(2)E(2)P(1 ), (16)

K(2) = P(1)E(2) T[E(2)P(1)E(2) v + R (2)] - 1. (17)

As already noted, the uncertainty of b(1), that is the diagonal

elements of P(1), ranges from less than 1 cm 2 s-2 for most of

the ocean to 100 cm 2 s -2 in the western boundary current and

circumpolar current regions. Furthermore, various integral
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Figure 10. Reference-level velocities in (a) the zonal Pacific 28°S
section and (b) in the Southern Ocean meridional 132°E section.

Circles are the observations, y(2) from the TOPEX/POSEIDON data
and crosses are the estimates from the hydrographic model,

E(2)b(1) = Fb (1). Both data were filtered with a low-pass 14 ° (1600 km)

filter along the section. The uncertainty in y(2) lies in the shaded region,

which almost always includes the hydrographic estimates.

constraints on b(1) are formally accurate to the equivalent of

about 2 Sv. It is these generally small estimated error variances

with which the added altimetric constraints must 'compete'.

Because for reasons of numerical accuracy we chose to

work with the geoid carried only to degree and order 25,

the E(2) matrix is thus the low-pass filter F with cut-off at

7c-_360/25 = 14.4 ° = 1600 km. To reduce the computational

load, we divided the sections (Fig. 1) into large regions (North

Pacific, North Atlantic, etc.) and calculated separately b(2) and

P(2) over those regions, losing the correlations in the errors

between the different regions. Those correlations are, however,

weak, and this truncation has no noticeable influence on

the results. The end result is a new estimate of the flow fields

and their transports which is found to be consistent with both

the prior model and the altimetric constraints. (Strict mass-

transport constraints in the Southern Ocean are, however, lost,

as they depend upon the interregion correlations.)

The norm of K(2), which controls the magnitude of the

change made to b(1), is dependent on the estimated noise

covariance, 11(2), as well as on the structure of P(1); that is, the

large diagonal elements of P(1) do not by themselves imply that

the norm of K(2) will be small; rather, the structure of

the matrix is involved through the product E(2)P(1)E(2) r.

In practice, however, the changes implied in the diagonal

elements of P(1) by eqs (15) and (17) are less than 3 per cent

almost everywhere. Exceptions occur, for example in the

©1997 RAS, GJI 128, 708-722
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Figure11.Influenceof theTOPEX/POSEIDONaltimetricdata
onthereference-levelvelocities.The132°Esectionismoreheavily
influencedbythealtimetrybecauseit isinitiallyoneofthemost
uncertainsectionsinthehydrographicresults;othersectionsareonly
weaklyinfluenced.Dotsarethesolution[of1)andthestandarderror
fromthehydrographicmodel.Circlesaretheobservationsy(2)from
TOPEX/POSEIDONwiththeirstandarderror.Thesolidlineshows
thecombinedsolutionwiththeuncertaintygivenbytheshadedarea.
TheshadedareaextendsbeyondtheTOPEX/POSEIDONuncertainty
becausethetotaluncertaintyincludesshortscalesnotrepresentedby
thealtimetry.

circumpolarcurrent(seeFig.11),where6percentreductions
aremadeby thealtimetryreflectingthegenerallypoorer
resolutionthereinthepurelyhydrographicinversion.

Onemustbecareful,however,beforeconcludingthatthe
altimetryisaddinglittletothepriorestimate:propertytrans-
ports,e.g.ofmassandheat,areintegralpropertiesoftheflow
field,andthussensitivetolong-wavelengthinformationinthe
reference-levelvelocity.Thecombinedresultcan,inprinciple,
producechangesin integratedtransports,eventhoughthe
changesinanygivenelementbi are quite small. To understand

this possibility one can either examine the structure of P(2)

relative to that of P(1), or, as we have chosen to do, compare

the property transports before and after the addition of the

altimetry.

5 TRANSPORT SHIFTS

Transports of mass, temperature, salinity, oxygen, silicate and

phosphate and their respective uncertainties associated with

solutions b(1) and b(2) were computed. The changes in the

estimated transports are generally less than 1 per cent every-

where, except along the sections 30°E, 132°E and 0°E (that

from the Cape of Good Hope), all crossing the Antarctic cir-

cumpolar current, which had the most uncertain b(1). In these

places, the transports of some of the properties (including

temperature) are modified by up to 7 per cent and their

uncertainties decrease by up to 5 per cent, but the net mass

transport is very little changed, probably because of the small

errors in the mass conservation constraints that determine b(1).

The box residuals remain relatively unchanged. In Fig. 12 the

temperature fluxes for each section and the changes induced by

the TOPEX/POSEIDON data are shown. Table 1 summarizes

the heat-flux uncertainty change over large regions.
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Figure 12. Temperature fluxes and uncertainties for each section. The

results from the hydrographic inversion alone are denoted by a pair of

dots, with an uncertainty given by the shaded area. The combined

result is given by a horizontal line segment, which is often visually

indistinguishable from the hydrographic result (an exception is e.g.

along section m30e). The uncertainty of the combined solution is given

by two horizontal line segments on either side of the solution; these

again are often indistinguishable from those of the pure hydrographic
solution. Note that on this panel the flux across section A11N does not

account for the North Brazil current; the total value with the Brazil

current included is close to +330x109 °C kg s-l.

The conclusions from these calculation are then two-fold

and straightforward: (1) there is no inconsistency of estimates

of the surface velocities Vs,h(1) and Vs,a within their respective

uncertainty estimates, and (2) the additional information pro-

vided to the hydrographic inversion by the absolute altimetry

makes no qualitative, and only a small quantitative, change in

the solution.

Although this result might be regarded as disappointing, it is

in many ways a major achievement: altimetry and marine

geodesy have progressed in the past 15 years from a situation in

which the implied errors in absolute sea-surface estimates

relative to the geoid had to be measured in metres, to one in

which the errors are a few centimetres, an improvement of two

orders of magnitude. Furthermore, two entirely different

methods for estimating surface topography, hydrographic

inversions and absolute altimetry, have been brought into

agreement at an accuracy of a few centimetres per second.

The issue now is whether one more order-of-magnitude

Table 1. Percentage reduction in the heat-flux uncertainty using

various assumed geoid slope error covariances. Results are grouped by

region. JGM-3 is the present geoid estimate used for TOPEX/
POSEIDON analysis; the Sharma (1995) degree 25 result is more

conservative than the Bettadpur (private communication, 1996)

computation at degrees 25 and 70.

Region/Geoid N. Atl. N. Pac. S. Pac./Ind. ACC

JGM-3 0 0 0 1-6

Sharma 25 1-10 5-30 15-35 20-40

Bettadpur 25 1-20 8-35 20-45 20-40

Bettadpur 70 1-30 15-50 30-60 30 60

_•: , : /. •i'¸; :': ; ,' ,; •
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improvementin the altimetric accuracies can be achieved in the

next 15 years.

6 IMPROVED GEOID ACCURACY

We turn, next, to the important question of the impact on

estimates of the ocean circulation of potential improvements

in the geoid estimates from any of a variety of hypothetical

spaceborne gravity missions. Such missions have been the

focus of discussion for more than 20 years, a discussion that

has become more important with the current availability of the

high-accuracy TOPEX/POSEIDON data. Recent discussions

include NASA (1987), Bettadpur (1993), Elema (1993), Sharma

(1995), Rummel, Sneeuw & Mueller (1995), and Balmino et al.

(1996).

Some comment is also required concerning our particular

measure of the impact of more accurate geoid data. We have

chosen to study improvements in the uncertainty of integrated

mass and temperature (heat) fluxes. Because the ocean circu-

lation is important for a vast variety of phenomena, one can

easily imagine focusing on a different goal (the flux of carbon in

the East Greenland current, to pick an arbitrary example) and

for which the resulting impact of an improved geoid might be

very different. Such choices of goals are, however, inevitable in

science and we make no apology for our particular figures of

merit: the heat and mass fluxes are central elements in the im-

portant problem of understanding the global climate. Other

investigators with other goals are urged to study similarly the

impact of improved geoids. Their conclusions may well be

different from ours.

In attempting to determine the degree of the improvement

in knowledge of the ocean circulation that would result from an

improvement in geoid accuracy, one must be careful to separate

the impact of errors occuring in the in situ inversion that are

intrinsic from those that are accidents of the particular data-

base or method being used. A complete and clear answer to the

question posed is impossible both because full error analyses of

the potential gravity measurements are not available, and be-

cause one can only speculate as to the characteristics of future

in situ oceanic observations and their analyses. As has been

stated above, Macdonald's solution was necessarily based upon

a hydrographic survey spanning 25 years. This property of the

hydrography introduces the time-dependent error, with covar-

lance Rtt, and provides a limit on the utility of even a perfect

geoid if the goal is to estimate the ocean over those 25 years. If

one worked instead with a hydrographic survey that was

essentially instantaneous (defined to be conducted over order

10 days, the time required for TOPEX/POSEIDON to sample

the ocean once), then the elements of the long-wavelength time-

dependent error Rtt(2)= FRttF T would be much smaller. Such

rapid surveys of single transoceanic lines are today possible in

principle with existing fast-profiling devices. Alternatively, and

perhaps more realistically, ocean general circulation models

are capable of producing global instantaneous values, and the

ultimate goal of our exercise is to apply the altimetric con-

straints to such models. We will suppose, then, that Rtt (and

FRttF T) will in the future have much reduced norms, becoming

effectively vanishingly small. (We ignore the important practi-

cal obstacle, discussed above, that existing general circulation

model results are not accompanied by uncertainty estimates,

and to proceed we are postulating that they are comparable to

those from the in situ inversion.)

Sharma (1995) produced an estimate of the geoid error that

would result from a hypothetical low-low satellite-to-satellite

tracking mission. Further details are given in Appendix D. The

result from this simulation showed a significantly improved

recovery of the geopotential compared to the JGM-3 field. This

estimate was converted into the equivalent error covariance

matrix Raa at N = 25 as used above, and the property transport

fluxes recomputed. Now the rms geoid error to this degree

corresponds to about 0.15 cm s -1 at 45 ° (see Fig. 13). Rtt was

greatly reduced, to an equivalent rms error of about

(0.02 cm s 1)2 at 45 ° latitude, and is no longer limiting. In the

South Pacific, Indian and Southern oceans, the mass-flux

uncertainties are reduced by about 15 per cent, with heat-flux

uncertainty reductions of 30-40 per cent. Elsewhere, there are

only slight mass-flux error reductions (less than 4 per cent),

while the North Pacific heat-flux uncertainty is reduced by

about 30 per cent. In contrast, heat-flux uncertainties in the

North Atlantic drop by between 1 and 8 per cent, presumably

reflecting the much smaller scale of this basin.

Sharma's analysis is being repeated (S. V. Bettadpur,

private communication, 1996) under the assumption that

both satellites are tracked by the Global Positioning System

(GPS) and with an increased mission lifetime. A preliminary

quantification of Bettadpur's analysis is illustrated in Fig. 13 in

terms of the geostrophic velocity error. Sharma's result was

evidently conservative and it is plausible that a real mission

outcome will be much more accurate than he found. Assuming

Bettadpur's result is correct, Rtt as used above becomes the

limiting factor. To explore the best possible outcome,we set Rtt

to zero, along with all other errors, with outcome displayed in

Table 1.

At degree 70, Bettadpur's analysis produces a reduction in

the heat-flux uncertainty by a factor of two. The remaining

errors arise from the short scales that are not resolved by the

degree 70 geoid. To render this residual more concrete, one row
of the error covariance matrix was Fourier transformed to

produce an approximate wavenumber spectral estimate, as

depicted in Fig. 14. (The row corresponds to the covariance of
a station pair at 18°S in the centre of the Indian Ocean.) The

spectral density is shown for: (1) the initial hydrographic

uncertainty, P(1), (2) the uncertainty after improvement with
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Figure 13. Root-mean-square geoid error from JGM-3 and a hypo-

thetical gravity mission. Shown is the geostrophic velocity error

implied at each station pair for the existing JGM-3 geoid (very heavy

line), Sharma's simulation at degree 25 (bold line), Bettadpur's

simulation at degree 25 (normal line) and at degree 70 (dashed line)
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Figure 14. Approximate reference-level velocity error spectral esti-

mates: from the hydrographic model (dashed line), after improvement

with Bettadpur's geoid at degree 25 (heavy line) and at degree 70 (light

solid line). The considerable remaining energy at high wavenumbers is

the origin of the final uncertainty in the oceanic heat fluxes. Estimated

by Fourier transforming one row of P(2) corresponding to a covariance

along 18°S in the Indian Ocean.

Bettadpur's estimate at degree 25 and (3) at degree 70. The

accurate geoids eliminate almost all the errors for scales longer

than the cut-off wavelength, but leave the shorter scales

untouched. Because oceanic heat fluxes remain sensitive to

correlation between these short-scale flow fields and the tem-

perature field, there is a considerable uncertainty remaining in

the computations.

Other estimates exist for error budgets of different gravity-

mission designs (Rummel et al. 1995; Balmino et al. 1996;

B. Bills, private communication, 1996); however, no slope-
error covariance has been made available to us for these other

missions. A simple final experiment was therefore attempted in

which Raa was given a purely white-noise structure with total

variance of 3 cm 2 s -2 at 45 ° spread uniformly across all scales

down to the station spacing. Heat-flux errors decreased

between about 20 per cent and 60 per cent in the circumpolar

sections, but only slightly elsewhere. If, as has been suggested,

realistic gravity missions could do far better than the

equivalent of 3 cm 2 s -2, then much larger error decreases are

evidently possible. Until complete error budgets for such

missions are available, there seems little point at present in

pursuing these calculations further.

7 SUMMARY AND CONCLUSIONS

We draw three simple conclusions from this

calculation:

lengthy

(1) The error budgets for JGM-3 and for the in situ

inversion of Macdonald (1995) demonstrate that the geoid

estimate is consistent with what is known of the large-scale

general circulation;

(2) the present accuracies of JGM-3 are inadequate to

improve significantly the in situ result, even one using a

simple, if reasonable level of no motion (Macdonald's starting

point);
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(3) proposed gravity missions, in so far as they quantitatively

resemble the one for which we have had adequate information

to study the impact, will improve existing estimates of mass

and heat fluxes, and should reduce the largest existing

uncertainties by about a factor of two.

With the remaining errors being attributed to smaller

scales, the impact of higher-order geoids may be limited by the

time variability as it is maximum on scales of a few hundred

kilometres (Fig. 8). The most likely way that these errors can

be removed is by the use of simultaneous hydrographic and

altimetric measurements over large (but non-global) regions.

The last point requires further exploration. The in situ inver-

sion was carried out under the apriori assumption that average

deep-ocean velocities do not exceed about 1 cm s 1rms over all

scales, down to the station spacing, (near 50 km on average).

Furthermore, Macdonald (1995) estimated the formal mass

transport errors of her result as approximately 2x109 kg s -1

(2 Sv), which places a strong constraint on the integral proper-

ties of this deep flow field. This uncertainty may be somewhat

optimistic, but is surely accurate to within an order of magni-

tude. Choose any specific horizontal scale, L, over which the

general circulation is believed known already to within 2 Sv. To

reduce this uncertainty signficantly, the geoid slope error would

have to be sufficiently small that the implied transport error is

less than 2 Sv. To be specific, suppose the mean section water

depth is h = 5000 m (a bit large), at latitude 30 °. Two Sverdrups

of transport corresponds to a surface elevation change of about

0.3 cm, and this sets a threshold for significant improvement in

the uncertainties of the in situ inversion by any possible gravity

mission. (It is a peculiarity of geostrophic balance that the lat-

eral distance, Ax, over which the elevation changes is irrelevant:

the velocity corresponding to an elevation change At/is pro-

portional to At//Ax, and so the corresponding transport is

proportional to the velocity multiplied by the cross-sectional

area, or At/h.) If the true circulation uncertainty were closer to

20 Sv, the corresponding requirement on useful surface-slope

measurements would be reduced accordingly.

The alternative approach to synthesizing and using the

gravity/altimetry is, as alluded to in the Introduction, to

employ full general circulation models capable of computing

instantaneous oceanic states from realistic surface forcing

functions. Here the issue remains of the general difficulty of

producing useful model error covariances; learning how to do

so will be a major effort for the next several years.

It is not the purpose of this paper to draw conclusions about

the benefits of any particular gravity measurement pro-

gramme, but only to provide some perspective for those who

must make decisions about such missions and to provide a

methodology for exploiting future data streams. Evaluation of

any particular measurement strategy has to occur within the

context of existing knowledge.

However, this discussion reinforces an old idea--that

estimates from in situ data and the dynamics of the ocean

circulation imply a geoid estimate. Thus one strategy for

marine geoid improvement is to construct better estimates of

the ocean circulation through improvements in the dynamical

models and the in situ database. Subtraction of the implied sea

surface from the altimetric sea-surface (eq. 1) produces a geoid

estimate, and indeed we have made such estimates using ocean

general circulation numerical models. More generally, one

exploits all existing knowledge, whatever its origin, of the
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ocean circulation and the marine gravity field; the best geoid

estimate thus requires a full symbiosis of marine geodesy and

physical oceanography.
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APPENDIXA: GEOID SLOPE ERROR

COVARIANCE

Given the error covariance for the coefficients of a spherical

harmonic geopotential model, the corresponding error

covariance of geoid slopes associated with a set of scattered

geographic locations and directions can be calculated. Using

Brun's formula (Heiskanen & Moritz 1967, p. 85), consider the

geoid height error, 6h, expressed as a function of the geodetic

latitude, _b, and longitude, 2:

N

6h(qS,2)= Z 6nm(_)qm(_.), (ml)
m= --N

with

£__ a - . -
cSHm(¢) = # Pnlml( sin _)o)(_Cnm (A2)

y0r0 n=lml

and

costa2, m_>0
qm(._) = , (A3)

-- sinm2, m < 0
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wherea, # denote the semi-major axis and the gravitational

constant of a mean earth ellipsoid to which the geoid height

is referenced, and ?0, r0 and qS0 are the normal gravity, the

geocentric radius, and the geocentric latitude evaluated at

the surface of the mean earth ellipsoid as functions of _b.

Pnlml denotes the fully normalized Legendre polynomial of

degree n and order Iml, the extension to negative order using

eq. (A3). 8 C',m denotes the error in the corresponding spherical

harmonic coefficient, and N is the cut-off degree.

Taking the surface gradient of (A1) in the direction of

azimuth angle A, one obtains the geoid slope error,

6s(G 2, A) = 3Sx(fb, 2) sin A + 3Sy(O, 2) cos A, (A4)

where 6Sx, bSy denote the zonal and meridional components,

1 d6h N

6Sx($'2)=rocosq5 d2- _-J c_Um(_)pm(4)'
m= --N

1 dSh N
-- _ 8V,,(c))q,,(4), (A5)

ro dO m=-U
&/¢, 4)....

with

N N

Xnm(Cfi)(_fnm' (_Vm(_))= Z Ynm(_))_fnrn'

= lml . = Iml

(A6)

__o ( a'_ n rnlgnlmt I_ ( a ) n di_nlml

(A7)

and

pm(4) = -- qm( -- 4). (AS)

Consider now two geoid slopes, s(qS1, ']'1, A1) and S(q_2, `']`2, A2).

Their error covariance can be expressed as

Rss -- (_Ss(qS1. ']'1, A1)_Ss(q_2, `']`2, A2)) -- aT(_Ss(qS1,41)_5s(q_2, 42)5a2 ,

(A9)

with

(as(_l,41)&(_2,&)5

and

N N

Z Pro' (41)(auT' (_l)aUm2 (_b2) >pT2 (42) (A10)

ml =-N m2=-N

(0Urn1 (41)aUm2 (q_2)5

N N

Z Z T - a- X T= Xnlml(O1)((_Cn,m, Cn2m2 ) n2m2(q_2), (All)

t/l = Iml n2 = Im2

where vector/matrix notation is used such that 6s=

{_SSx,_SSy} T, _SU_{_U,{SV} T, X_.{X, Y} T, p-- {p,q} and
ai -{ sin di, cos Ai} • Each element of the two-by-two matrix

equation (A10) is essentially a 2-D Fourier series whose

coefficients are given in (All). We will refer to (All) as the

'latitude-lumped geoid slope error covariance' (LEC). When

the size of the geopotential covariance, and/or the number of

slopes is large, the covariance calculation becomes a com-

putationally demanding task. Because the computational

burden lies mainly in the LECs, we first generated them for all

possible pairs of 1c intervals of latitudes, and stored them in a
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direct access device. For L latitudes, there exist L(L+ 1)/2

latitude pairs and each pair has 4(2N+ 1)2 LECs. To construct

the 1600 by 1600 slope error covariance matrix, the stored

LECs were interpolated to each hydrographic station pair in

terms of bicubic Lagrange polynomials over four latitudes by

four latitudes. Longitudinal evaluation of (A10) followed by

(A9) then completes the task.

APPENDIX B: COVARIANCE OFAWHITE-

NOISE FIELD

For a homogeneous isotropic field on a sphere, the spatial

covariance between two arbitrary points (i and j) can be

expressed as:

1
aZ(2n+ l)Pn(cos_ij), (B1)

Cv(i,j) = Cv(Oi, 4i, Oj, 2j) = _ n=0

cos _U = cos Oi cos Oj+ sin Oi sin Oj cos (4i - 4j) (B2)

(e.g. Wunsch & Stammer 1995), where Pn is the nth Legendre

polynomial, ffij is the spherical angular distance between the

two points, and c_ is called the degree variance. Let the field be

white to the cut-offdegree N, i.e. c_, = 1, for n<_N. As shown in

Fig. B1 (for N = 70), the covariance for such a truncated white-

noise field has a local pattern similar to a sinc function with a

pseudo period of about 360°/N. This pseudo-period can be

qualitatively explained by the expression (Abramowitz &

Stegun 1968, eq. 8.9.1)

N+I

C/j -- 4rt(1 -- cos _k/j) [PN( COS_/j) -- PN+ 1( COSI///j)],

which can also be approximated as (Abramowitz & Stegun

1968, eq. 8.7.3)

C/j _ GN[2 cos (iV + 3 / 2)$ij -- cos (N + 7 / 2)$,j] sin ($/j / 2),

(B3)

where GN is a function of N and (1 - cos 6/j). The period of the

leading term is 360°/(N+ 3/2). The apparent period observed

in the JGM-3 geoid slope error covariance (developed to

N = 70) is larger than that of the white-noise field by about 20
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Figure B1. Covariance vector of a white-noise field expanded in

spherical harmonics at degree and order 70.
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per cent in some locations, and thus deviates significantly from

white noise.

APPENDIX C: ALONG-SECTION

FILTERING OF THE UNEVENLY SPACED

VELOCITIES

An ideal 1-D filter that removes wavelengths shorter than 0c is

1

(Bracewell 1978) for a linear distance 0 (in our case 0 is the

spherical angular distance). For any 1-D field v(0) (here the

velocity normal to the section) the filtered field _ is obtained

from the convolution

5(0) = f(O' - O)v(O') dO', (C 1)
--oo

where the integration is carried out numerically and the
bounds are finite. To avoid Gibbs' effects, one may use a

tapering scheme such as a Hamming window. With a window

size of 60c and a sampling interval of 0.5 ° (the average distance

between station pairs), the response of such a tapered filter is

shown in Fig. C1. For the velocity data, which are unevenly

spaced, trapezoidal integration was used:

j2(1)-- 1 1

{)i = E 2 (Oij+ 1 -- Oij)(fijCijl)j "[-fijcij+ 1Vj-b 1), (C2)

J =Jl (i)
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Figure C1. Wavenumber response of the ideal 1-D filter

f(O,0c)=sinc(_b/Oc) with a Hamming window h(0,_c)-

0.54 0.46 cos (O/6_'c). la) The tapered filter f(O, Oc)h(_O,Oc) with

qJc= 360/70 - 5.14 °, f is sampled at a 0.5 ° step, the mean distance
between station pairs. (b) The amplitude drops at _0c 1_-0.2.

where 0ij is the distance betwen pair i and pair j. jl (/),j2(i) are
defined as the first and last pairs of the section in the 60c

window centred at pair i. cij= cos(Ai-Aj) is the direction

cosine projecting velocity vj (with azimuth angle Aj) onto the

direction of velocity vi (with azimuth angle Ai). The filtering

scheme (C2) will be represented in matrix form as

= FNV, (C3)

where FN is a banded matrix whose bandwidth corresponds to

the window size 60c. The effect of the filter F70 (0c = 5.14°) is

illustrated in Fig. C2.

APPENDIX D: ALOW-LOW SATELLITE-

TO-SATELLITE GRAVIMETRIC MISSION

Sharma (1995) produced an estimate of the accuracy with

which gravity could be recovered from a hypothetical

low-low satellite-to-satellite tracking mission. In particular,

the assumption was made that two coplanar satellites with 5 °

separation are in a near-circular near-polar orbit at 250 km

altitude. The lead satellite is assumed to be tracked by GPS and

the two satellites are assumed to measure mutually relative

ranges and range rates with precisions of 10 gm and 1 gm

respectively. The analysis of a single 10 day repeat cycle was

carried out with a measurement sampling interval of 30 s in the

presence of 1 nm s -2 white-noise acceleration errors. Further

details can be found in Sharma (1995).
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Figure C2. Effectofthe 1-DfilterF70 on the velocity data on the zonal
section Pacific 10°N. (a) The original TOPEX/POSEIDON data

remain quite unchanged as they do not contain short wavelengths.
(b) The small scales are removed from the relative velocity, yielding a

less noisy estimate of the reference level velocity shown in (c).
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